

Prof. Dr.-Ing. Chihao Xu Lehrstuhl für Mikroelektronik Postfach 15 11 50, 66041 Saarbrücken

Tutorial Microelectronics III

WS 2019/20

1. Devices in MOS-Technology

Task 1:

Calculation of Capacity of Interconnects and of Square Resistance

The minimum width and the capacity of metal-connection in 0.25 μ m CMOS technology is listed in Figure 1.

	Metal1	Metal2	Metal3	Metal4
Minimum Width (µm)	0.25	0.35	0.45	0.50
Area Capacity (aF/µm2)	30	15	9	7
Perimeter – Capacity (aF/µm)	80	50	40	30

Figure 1: Minimum Width and Capacities of Interconnects

a) An interconnect with length 1000µm and width 1µm is necessary in a circuit. The square resistance of Metal 1 to 3 is 80mΩ/□ and of Metal 4 40mΩ/□. With which Metal-Interconnect the time delay is minimal?

Figure 1: Layout of Resistors

- b) Determine the nominal-resistance value R_1 and R_2 . The sheet resistance is $30\Omega/\Box$, $l_1 = 20 \ \mu m$, $w_1 = 1 \ \mu m$, $l_2 = 12 \ \mu m$ and $w_2 = 3 \ \mu m$.
- c) The process variation (mask misalignment) is now 0.1 μm . Please determine the range of resistance ratio R1/R2 due to this inaccuracy.
- d) How high is the fault if the design parameter (1 and w) are doubled? And what is the disadvantage?
- e) Please use a layout method to minimize the fault?